//adsauto //google 4 //verification Bing //verification yadex Complex Numbers Exercise with Answer | Example 1

Complex Numbers Exercise with Answer | Example 1

Complex numbers problems with solutions

Complex numbers exercise : 

Solve the following two equations in the set of complex numbers: 

      Z²- 2Z + 5 =0    

     Z² - 2(1+√3)Z + 5 + 2√3 = 0

 in Orthogonal coordinates (o;i,j)  We consider the points A , B , C and D  are the images of complex numbers 1+2i , 1+√3 +i , 1-2i , 1+√3-i  respectively.

a) What is the nature of the triangle ABC ?

b) Write the equation of the circle C around the triangle ABC.

c) Prove that the point D belongs to the circle C.

d) Create C And the points A, B, C and D in the Orthogonal coordinates.


solution of the example :

Solve the following two equations in the set of complex numbers

      Z ²- 2Z + 5 =0    

     Z² - 2(1+√3)Z + 5 + 2√3 = 0

A) Z ²- 2Z + 5 =0 

Calculate the discriminant :

Δ=  (-2)²-4(5)  = - 16 = (4i)² 


Z1 = (2-4i)/2    = 1+2i    ,    Z2 = (2+4i)/2    = 1+2i


 B) Z² - 2(1+√3)Z + 5 + 2√3 = 0

Calculate the  discriminant:

Δ= 4(1+√3)²-4(5+2√3) = 4(1+2√3)-20-8√3 = -4 =(2i)²   


Z1 = [2(1+✓3)-2i]/2  = 1+√3-

Z2 = [2(1+✓3)+2i]/2  = 1+√3+i  


a) The nature of the triangle ABC:

We consider points A ,B , C , D images of complex numbers 1+2i , 1+√3+i  , 1-2i , 1+√3+i  respectively

AB= | ZB -  ZA||1+√3+1-2i| = |√3-i ( 3)² +(-1)²  = 2

AC= | Zc -  ZA| = |1-2i 1-2i| = |-4i| =  (-4)²  = 4

CB= | ZB -  ZC| = |1+√3+1-√3+| = |2i 2² = 2

since: AB²+CB²=AC² then the triangle ABC is a right triangle according to the Pythagoras Theorem.

b) The equation of the circle C around the triangle ABC.

M (x;y) ∈ C this means.

MAMC=0

MA=(1x2y),MC=(1x2y)


MAMC=0    i

this means: (1-x) (1-x) + (2-y) (-2-y)=0

1-x-x+x²-4-2y+2y+y²=0

x²+y²-2x-3=0


c)  Prove that the point D belongs to the circle C.

(1+√3)²+(-1)² - 2(1+√3) -3 = 1+3+2√3 +1-2-2√3-3=0

then the point D belongs to the circle C .

d) Create C And the points A, B, C and D in the Orthogonal coordinates.

circle C around the triangle ABC




 objectives of the exercises: 

solved problems on complex numbers

  • Solve quadratic equations in complex numbers using the discriminant
  • Determine the type of triangle using complex numbers
  • Determine the equation of a circle that includes three points that belong to a triangle


Read also:

complex numbers exercise with answer  | example 2






Comments



Font Size
+
16
-
lines height
+
2
-